

Science with The Square Kilometre Array

Joseph Lazio
Project Scientist, SKA Program
Development Office

Jet Propulsion Laboratory, California Institute of Technology

Square Kilometre Array

The Global Radio Wavelength Observatory

- Originally: "Hydrogen telescope"
 Detect H I 21-cm emission from Milky Way-like galaxy at z ~ 1
- SKA science much broader
 - ⇒ Multi-wavelength, multimessenger
- On-going technical development
 Cyber-infrastructure and "big data"
- International involvement

SKA Key Science

International working group

- Strong-field Tests of Gravity with Pulsars and Black Holes
- Galaxy Evolution, Cosmology, & Dark Energy
- Emerging from the Dark Ages and the Epoch of Reionization
- The Cradle of Life & Astrobiology
- The Origin and Evolution of Cosmic Magnetism

With design philosophy of *Exploration of the Unknown*

Science with the Square Kilometre Array (2004, eds. Carilli & Rawlings, New Astron. Rev., 48)

21st Century Astrophysics

20th Century: We discovered our place in the Universe.

21st Century: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- Gravity
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force

Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Evolution of the Universe

Evolution of the Universe **Epoch of Reionization**

SKA objective: Image the IGM transition in the H I (21-cm) line

Furlanetto et al.; Gnedin

Galaxy Assembly Stars and Gas

- Gas content and dynamics becoming critical part of simulations.
- Astronomy is an observational science.
- Need observations of gas content —over cosmic time—to understand galaxy formation!

observation vs. simulation

Keres et al.

Eris simulation (Guedes et al.) NGC 6946 (T. Oosterloo)

Galaxy Assembly The Role of Mergers

(Moster et al. arXiv:1104.0246)

- Mergers are recognized as important aspect of galaxy evolution and formation
- Gas can be sensitive tracer of interactions, long after original event took place
 - E.g., Holwerda et al. with THINGS

Astrobiology at Long Wavelengths

$\lambda > 1$ cm

- Not affected by dust
- Complex molecules have transitions at longer wavelengths
- "Waterhole" (1.4–1.7 GHz)

Magnetically-generated emissions from

extrasolar planets

Complex organic molecules detected at radio wavelengths

21st Century Astrophysics

20th Century: We discovered our place in the Universe.

21st **Century**: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- Gravity
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force
 Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- · Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- ·Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Did Einstein Have the Last Word on Gravity?

PSR J0737-3039

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}/c^4$$

- 1. Equivalence principle
- 2. Strong-field tests of gravity
- Neutron star-neutron star and neutron star-white dwarf binaries known
- ? Black hole-neutron star binaries?

Mass A (M_{Sun})

Kramer et al.

SKA: Gravitational Wave Detector

Test masses on lever arm

- Pulsar Timing Array = freely-falling millisecond pulsars
- LIGO = suspended mirrors
- LISA = freely-falling masses in spacecraft

Pulsar timing arrays starting to provide results from ensemble of pulsars

- EPTA (van Haastern et al., above)
- PPTA (Yardley et al.)
- NANOGrav (Demorest et al.)

Origin & Evolution of Cosmic Magnetic

- Magnetic fields are fundamental, but poorly constrained
 - Affects galaxy, cluster evolution?
 - Affects propagation of cosmic rays in ISM and IGM
- All-sky rotation measure surveys provide B fields along lines of sight
- Continuum in I, Q, and U!

Origin & Evolution of Cosmic Magnetic

- Magnetic fields are fundamental, but poorly constrained
 - Affects galaxy, cluster evolution?
 - Affects propagation of cosmic rays in ISM and IGM
- All-sky rotation measure surveys provide B fields along lines of sight

Magnetic Fields and Cosmic Rays

- Are ultra-high energy cosmic rays (UHECRs) produced in nearby AGN?
- Galactic magnetic field influences cosmic ray propagation
- Different models of Galactic field imply different arrival directions
 - Axi-symmetric vs. bisymmetric?
 - Field directions above and below the Galactic plane
 - Effect of turbulence?
 - **–** ...?

Takami, arXiv:1104.0278

Cosmology and Gravity

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}/c^4$$

Origin and Fate of the Universe

- Era of "precision cosmology"
 ... or precision ignorance
- Need to sample a substantial volume of the Universe
- Volume ~ $D^2 \Delta D \Omega$
 - D distance; Ω solid angle
 - Surveying to larger D is difficult
 need larger telescopes
 "square kilometre" of SKA
 - Surveying larger sky areas Ω
 "just" requires more observing time

Composition of the Universe

Cosmology and Sky Surveys

- Image the sky, locating galaxies
 Analysis of locations compared with cosmological models to constrain parameters
- Two broad classes of surveys
 - Continuum: e.g., NVSS, FIRST, ASKAP/EMU, WSRT/APERTIF/WODAN
 - Spectroscopic: SDSS, Arecibo ALFALFA, ASKAP/WALLABY, SKA H I survey

Spectroscopic surveys locate in **3-D** space! very powerful

 Ultimate goal: spectroscopic survey of 1 billion galaxies

Cosmology and Gravity

Detection of weak lensing (E modes) from FIRST (Chang et al.)

Radio observations should have fewer (different) systematics

21st Century Astrophysics

Fundamental Forces and Particles

- Gravity
- Magnetism
- Strong force

Origins

- Galaxies and the Universe
- Stars, Planets, and Life

"The Universe is patiently waiting for our wits to grow sharper."

Photon frequency /wavelength / energy

Time

Polarization

Sensitivity

Field of View

Angular Resolution

The Dynamic Radio Sky

- Neutron stars
 - Magnetars
 - Giant pulses
 - Short GRBs?
- Microquasars
- Tidal Disruption
 Events

- GRBs (γ-ray loud; γ-ray quiet?)
 - Afterglows
 - Prompt emission?
- Sub-stellar objects
 - Brown dwarfs
 - Extrasolar planets?
- Scintillation
- GW counterparts
- UHECRs
- ETI
- Exploding black holes
- ???

Rotating Radio Transients (RRATS)

Imaging with Arrays

Fourier transform (*u-v*) plane

Fourier Transform

 $\leftarrow \rightarrow$

Image plane

Imaging Surveys

Requirements

- Many antennas in order to provide sensitivity and image quality large $N_{\rm antenna}$
- Spectral resolution because of wide-field effects, line emission from galaxies, or both large N_{frequency}
- Long integrations in order to obtain adequate signal-to-noise ratio large N_{time} , e.g., 1 hr at 1 s sampling?

$$N_{data} \sim N_{antenna}^2 N_{frequency} N_{beams} N_{time}$$

ASKAP	SKA Phase 1	SKA Phase 2
N _{antenna} = 30	N _{anntena} ~ 250	N _{antenna} ~ 1000
N _{beams} = 30	N _{beams} = 1	N _{beams} = 1?
N _{frequency} ~ 16k	N _{frequency} ~ 16k?	N _{frequency} ~ 16k?

Imaging Surveys II

ASKAP	SKA Phase 1	SKA Phase 2	
N _{antenna} = 30	N _{anntena} ~ 250	N _{antenna} ~ 1000	
N _{beams} = 30	N _{beams} = 1	N _{beams} = 1?	
N _{frequency} ~ 16k	N _{frequency} ~ 16k?	N _{frequency} ~ 16k?	
N _{time} ~4k			
$N_{data} \sim 1.8 \times 10^{12}$	$N_{data} \sim 4 \times 10^{12}$	$N_{data} \sim 65 \times 10^{12}$	
$N_{OPS} \sim 18 \times 10^{15}$	$N_{OPS} \sim 40 \times 10^{15}$	$N_{OPS} \sim 650 \times 10^{15}$	

- Imaging is more than "just" an FFT.

 Gridding, deconvolution, wide-field corrections, self-calibration, ...
- Community estimates are 10⁴ to 10⁵ ops per visibility datum(!).
- Leads to significant power challenges
 - Related to moving data on/off chips
 - Careful design can yield significant savings, e.g., D'Addario (SKA Memo 130)

Fundamental Physics with Radio Pulsars

Arrival times of pulses from radio pulsars can be measured with phenomenal accuracy

- Better than 100 ns precision in best cases
- Enables high precision tests of fundamental physics
 - Theories of gravity, gravitational waves, nuclear equation of state
 - 1993 Nobel Prize in Physics
- Problem: Not all pulsars are equal!
- •Good "timers" < 10% of total population
- Need to find many more!
- ➤ All-sky survey

Pulsar Surveys I

Requirements

- Large bandwidths because pulsars are faint
- Long integration times because pulsars are faint
- Rapid time sampling in order to resolve pulse profile
- Narrow frequency channelization in order to mitigate interstellar scattering
- For a "pixel" on the sky, accumulate data for a time Δt over a bandwidth Δv
 - Suppose $\Delta t = 20 \text{ min.}$, $\Delta v = 800 \text{ MHz}$
- Time sampling δt with frequency channelization δv For GBT GUPPI, $\delta t = 81.92~\mu s$, $\delta v = 24~kHz$
- ➢ 60 GB data sets per pixel ...

Pulsar Surveys II

For GBT

- At 800 MHz, "pixel" ~ 16' = 0.3°
- About 350 kpixels in the sky
- 20 PB data set

For SKA

- At 800 MHz, "pixel" =1.2'
- About 76 Mpixels in the sky
- 4.6 EB data set

Data Intensive Astronomy

("There is nothing new under the Sun.")

Data Volumes

Ιππαρχο∫ (Hipparcus)

- •ca. 135 BCE
- Stellar catalog with 850 entries
- > SKA pulsar survey

Computational Limitations

Harvard computers

- Production of stellar plates and spectra ("data rate") was increasing enormously
- Examined and classified telescope output

> SKA all-sky survey

SKA Pathfinding

- Precursors and many pathfinders in existence or under construction
- ➤ Learn lessons from the Precursors and pathfinders across the full range of experience

Hardware, (firmware), software, data processing, operational modes, ...

Square Kilometre Array

The Global Radio Wavelength Observatory

- Originally: "Hydrogen telescope"
 Detect H I 21-cm emission from Milky Way-like galaxy at z ~ 1
- SKA science much broader
 - ⇒ Multi-wavelength, multimessenger
- On-going technical development
- International involvement

